Tropospheric Water Vapor and Climate Sensitivity

نویسندگان

  • EDWIN K. SCHNEIDER
  • BEN P. KIRTMAN
  • RICHARD S. LINDZEN
چکیده

Estimates are made of the effect of changes in tropospheric water vapor on the climate sensitivity to doubled carbon dioxide (CO2), using a coarse resolution atmospheric general circulation model coupled to a slab mixed layer ocean. The sensitivity of the model to doubled CO2 is found as the difference between the equilibrium responses for control and doubled CO2 cases. Clouds are specified to isolate the water vapor feedback. Experiments in which the water vapor distribution is specified rather than internally calculated are used to find the contribution of water vapor in various layers and latitude belts to the sensitivity. The contribution of water vapor in layers of equal mass to the climate sensitivity varies by about a factor of 2 with height, with the largest contribution coming from layers between 450 and 750 mb, and the smallest from layers above 230 mb. The positive feedback on the global mean surface temperature response to doubled CO 2 from water vapor above 750 mb is about 2.6 times as large as that from water vapor below 750 mb. The feedback on global mean surface temperature due to water vapor in the extratropical free troposphere (above 750 mb) is about 50% larger than the feedback due to the lower-latitude free troposphere water vapor. Several important sources of nonlinearity of the radiative heating rates were identified in the process of constructing the specified cloud and water vapor fields. These are (i) the interaction of clouds and solar radiation, which produces much more reflection of solar radiation for time mean clouds than for the instantaneous clouds; (ii) the correlation of clouds and water vapor, which produces less downward longwave radiation at the ground for correlated clouds and water vapor than when these fields are independent; and (iii) the interaction of water vapor with longwave radiation, which produces less downward longwave radiation at the ground for the average over instantaneous water vapor distributions than for the time mean water vapor distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates

This study diagnoses the climate sensitivity, radiative forcing and climate feedback estimates from eleven general circulation models participating in the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5), and analyzes inter-model differences. This is done by taking into account the fact that the climate response to increased carbon dioxide (CO2) is not necessarily only mediated ...

متن کامل

Stratospheric water vapor feedback.

We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry-climate model to be +0.3 W/(m(2)⋅K), which w...

متن کامل

Estimation and Analysis of Precipitable Water Vapor Using GPS Data and Satellite Altimeter

Determination of water vapor in the atmosphere plays an important role in forecasting weather conditions and precipitation studies. For this reason, it is very important to study the tropospheric delay, especially the wet component, which is due to the presence of water vapor in the atmosphere. In this paper, the amount of water vapor was estimated by altimeter satellite radiometer and GPS data...

متن کامل

Three-dimensional tropospheric water vapor in coupled climate models compared with observations from the AIRS satellite system

[1] Changes in the distribution of water vapor in response to anthropogenic forcing will be a major factor determining the warming the Earth experiences over the next century, so it is important to validate climate models’ distribution of water vapor. In this work the three-dimensional distribution of specific humidity in state-of-the-art climate models is compared to measurements from the AIRS...

متن کامل

The Sensitivity of the Tropical Hydrological Cycle to ENSO

Satellite observations of temperature, water vapor, precipitation and longwave radiation are used to characterize the variation of the tropical hydrologic and energy budgets associated with the El Niño–Southern Oscillation (ENSO). As the tropical oceans warm during an El Niño event, the precipitation intensity, water vapor mass, and temperature of the tropical atmosphere are observed to increas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999